Вы здесь
Главная > ОБО ВСЕМ > #НАУКА > ВОДА ПОКИДАЕТ МАРС

ВОДА ПОКИДАЕТ МАРС

Марс, возможно, теряет воду быстрее, чем предполагалось. Наблюдения, проведенные с помощью российского спектрометра АЦС на борту марсианского аппарата Trace Gas Orbiter (TGO) проекта «ЭкзоМарс», показали, что сезонное увеличение водяного пара в верхней атмосфере планеты может быть гораздо большим, чем предполагалось раньше, и он может находиться в перенасыщенном состоянии даже в присутствии облаков.

Статья с результатами работы опубликована в журнале Science 9 января 2020 г.

Вода на современном Марсе сосредоточена, в основном, в его полярных шапках. Если распределить её по всей поверхности планеты, то глубина водного слоя составит не более 30 м, и это менее 10 процентов того количества воды, которое, как считается, было раньше, во времена «теплого и влажного» раннего Марса. В атмосфере планеты воды еще меньше: если осадить ее, то толщина слоя составит всего 10 микрон (один микрон — миллионная доля метра, 10-6 м). Но именно через атмосферу Марс постоянно «теряет» воду: ее молекулы распадаются на атомарные кислород и водород, которые поднимаются до достаточно больших высот и уже оттуда улетают в межпланетное пространство.

Эта общая картина, однако, до сих пор не разработана в деталях. Один из нерешенных вопросов состоит в том, насколько быстро молекула воды может пройти весь путь: от попадания в атмосферу до превращения в водород и ухода из нее. Это во многом зависит от того, как высоко могут подниматься молекулы воды. Соответственно, исключительно важными становятся наблюдения за водяным паром, его концентрацией и распределением по высоте. Анна Федорова, заведующая лабораторией отдела физики планет Института космических исследований РАН, а также ее коллеги из ИКИ РАН и научных организаций Европы и Австралии изучали этот вопрос с помощью данных российского спектрометра на марсианском аппаратеTGO проекта «ЭкзоМарс».

АЦС успешно работает на орбите у Марса с весны 2018 года. В его состав входят три инфракрасных спектрометра, чувствительных к малым составляющим марсианской атмосферы. С апреля 2018 по март 2019 (это примерно половина марсианского года) АЦС провел около 1700 тысяч наблюдений в так называемом «режиме солнечных затмений». В этом режиме спектрометры комплекса АЦС смотрят на Солнце через атмосферу Марса, и регистрируют не просто наличие тех или иных химических соединений, но ещё и их концентрацию в зависимости от высоты. Таким образом были получены данные о концентрации молекул воды, а также о температуре и давлении атмосферы и количестве пыли в ней. За время наблюдений Марс проходил перигелий орбиты, то есть находился около ее ближайшей к Солнцу точки. В это время в его южном полушарии лето сменило весну и произошли две пылевые бури, в том числе одна глобальная, накрывшая всю планету.

По данным АЦС, в это время в обоих полушариях коэффициент перемешивания водяного пара, который измеряется в количестве частиц на миллион, оказался достаточно высоким, хотя южное полушарие оказалось более влажным. Кроме этого, в южном полушарии наблюдались периодические повышения концентрации водяного пара до высоты 100 км, а в северном полушарии это произошло только во время глобальной пылевой бури. Не обнаружилось и корреляции с локальным повышением температуры. Таким образом, транспорт водяного пара, видимо, связан с более крупномасштабным механизмом атмосферной циркуляции, который затрагивает сразу все полушарие.

Но важнейшим результатом работы стали наблюдения за водяным паром в состоянии перенасыщения.

Термин «перенасыщенное состояние» означает, что количество водяного пара, которое находится в определенном объеме атмосферных газов, больше значения, максимального для данной температуры. Ранее предполагалось, что в атмосфере Марса в случае перенасыщения «лишняя» вода мгновенно кристаллизуется. Как следствие, выше некоторой высоты должно происходить резкое падение парциального давления водяного пара в марсианской атмосфере (или, проще, содержание водяного пара должно резко падать).

В 2011 году исследователи из лаборатории LATMOS (Франция) и ИКИ РАН, в число которых входила Анна Федорова и ее соавторы, показали, используя данные аппарата «Марс-Экспресс», что водяной пар может существовать в состоянии перенасыщения на высотах около 30 км летом в северном полушарии в узком диапазоне широт. Теперь АЦС обнаружил значительные области перенасыщения летом в южном полушарии. По новым данным, водяной пар в перенасыщенном состоянии существует в обоих полушариях на высотах от 5 до 30 км, при этом корреляции с наличием или отсутствием облаков не наблюдалось. В южном полушарии, в частности, наблюдался некоторый «слой», содержащий водяной пар в перенасыщенном состоянии, на высотах от 15 до 40 км. Во время региональной пылевой бури эта особенность исчезла, но после нее восстановилась и снова постепенно исчезла ко времени весеннего равноденствия. Еще выше, от 70 до 80 км, «перенасыщенный» водяным паром слой атмосферы существовал, по-видимому, все время, в том числе при наличии облаков. Это обстоятельство косвенно подтверждает наличие некоторого эффективного механизма, который переносит воду в верхние слои атмосферы. На высоте 50–60 км также время от времени наблюдались перенасыщенные водяным паром «участки» атмосферы и, как и на более низких высотах, одновременно с облаками.

О чем говорят эти результаты?

Видимо, на перенос водяного пара в атмосфере, кроме наличия или отсутствия пыли, которая способствует конденсации облаков, а также нагревает атмосферу, влияют и другие обстоятельства. Во время прохождения Марсом перигелия в южном полушарии планеты водяной пар постоянно наблюдался на достаточно больших высотах.

Кроме этого, водяной пар находится в состоянии перенасыщения в довольно больших объемах марсианской атмосферы и достаточно спокойно «проходит» через облачный слой, а значит, достигает тех высот, откуда ему проще уйти из атмосферы в межпланетное пространство. «Мы наблюдаем водяной пар в состоянии перенасыщения вместе с наличием частиц льда в атмосфере, и значит, процесс конденсации не «собирает» весь лишний водяной пар в облака – говорит Анна Федорова. – Возможно, здесь играют роль резкое уменьшение температуры и/или высокая скорость переноса воды в атмосфере, так что облака просто не успевают сконденсироваться».

Еще один вывод статьи заключается в том, что сезонные изменения во время прохождения перигелия могут иметь большее значение, чем предполагалось ранее. В это время именно в южном полушарии начинается более интенсивный подъем воздушных масс, а вместе с ними и водяного пара. Возможно, на геологических масштабах времени именно этот механизм определяет темпы, которыми Марс теряет воду.

По материалам пресс-службы ИКИ РАН.

Схематичное представление «убегания» воды из атмосферы Марса. Солнечные лучи нагревают полярные шапки, молекулы воды испаряются в атмосферу. Ветер переносит их в более высокие и холодные слои атмосферы. Здесь они могут конденсироваться в облака («холодные ловушки») и остаться в атмосфере планеты. Но образование облаков на Марсе часто подавлено, так что атмосфера оказывается перенасыщена водяным паром, который может подниматься ещё выше и распадаться на атомы водорода и кислорода под действием солнечного ультрафиолета. Изображение ESA

Наша справка.
Проект «ЭкзоМарс» — совместный проект Роскосмоса и Европейского космического агентства. Проект реализуется в два этапа. Первая миссия с запуском в 2016 году включает два космических аппарата: орбитальный Trace Gas Orbiter (TGO) для наблюдений атмосферы и поверхности планеты и посадочный модуль «Скиапарелли» (Schiaparelli) для отработки технологий посадки.
Научные задачи аппарата TGO — регистрация малых составляющих марсианской атмосферы, в том числе метана, картирование распространенности воды в верхнем слое грунты с высоким пространственным разрешением порядка десятков км, стереосъёмка поверхности. На аппарате установлены два прибора, созданные в России: спектрометрический комплекс АЦС (ACS — Atmospheric Chemistry Suit, Комплекс для изучения химии атмосферы) и нейтронный телескоп высокого разрешения ФРЕНД (FREND, Fine-Resolution Epithermal Neutron Detector). Также Россия предоставляет для запуска ракету-носитель «Протон» с разгонным блоком «Бриз-М».
Второй этап проекта (запуск 2020 г.) предусматривает доставку на поверхность Марса российской посадочной платформы с европейским автоматическим марсоходом на борту. Россия также предоставляет для запуска ракету-носитель «Протон-М» с разгонным блоком «Бриз-М». В рамках обоих этапов в России создается объединенный с ЕКА наземный научный комплекс проекта «ЭкзоМарс» для приема, архивирования и обработки научной информации.

Добавить комментарий

Loading...
Top